第18天!!!
又是一道二分查找的题目:
Given an array of integers sorted in ascending order, find the starting and ending position of a given target value.
Your algorithm’s runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example, Given [5, 7, 7, 8, 8, 10] and target value 8, return [3, 4].
时间复杂度要求为O(logn)
,直接就暗示我们要用二分查找去做啊,但是这个又有限定条件,就是它需要求出范围,自然而然的就想到先用二分查找,然后从找到的点向两边去寻找边界。
相当简单的方法,但是如果遇到1,2,2,2,2,2,2,2,3
这样的序列,就变成了O(n)
的时间复杂度。
然后就可以自然而然的想到,做多两次二分查找,在序列nums[0:mid]
中寻找左边界,nums[mid:]
中寻找右边界,不然如果要是用二分查找的方法去做的话,就需要转换一下,我们找左边界的前一个元素,右边界的后一个元素,这样会方便一点。
1vector<int> searchRange1(vector<int>& nums, int target) {2 int first = 0,last = nums.size() - 1,mid;3 vector<int> ret{-1,-1};4 while(first <= last) {5 mid = (first + last)/2;6 if (nums[mid] == target){7 break;8 }9 else if (nums[mid] < target) first = mid+1;10 else last = mid - 1;11 }12
13 int l = mid,f = mid;14 ret[0] = first;15 ret[1] = last;23 collapsed lines
16
17 while(first <= l) {18 int m = (first + l)/2;19 if (nums[m] == nums[mid])20 l = m - 1;21 else if (nums[m+1] != nums[mid]) first = m + 1;22 else {23 ret[0] = m+1;24 break;25 }26 }27 while(f <= last) {28 int m = (f + last)/2;29 if (nums[m] == nums[mid]) f = m + 1;30 else if (nums[m-1] != nums[mid]) last = m - 1;31 else {32 ret[1] = m - 1;33 break;34 }35 }36
37 return ret;38}
这个思路很简单,也很好实现,就是代码会复杂一点,三个循环其实长得差不多,但是你不能合并起来,所以换一种思路尝试一下:
我们找到一个与target
相等的值nums[mid]
,我们对nums[0,mid-1]
再进行一次二分查找:
- 如果查找失败, 那么说明当前mid就是左边界
- 如果找到了,我们就更新mid,再对
nums[0:mid-1]
进行查找,直到查找失败。
对右边界做同样的事,我们就得到答案了。
1vector<int> searchRange(vector<int>& nums, int target) {2 vector<int> ret{-1,-1};3 int mid = nums.size();4 while( (mid = searchRangeIter(nums,0,mid-1,target) ) != -1)5 ret[0] = mid;6 //mid = -1;7 while( (mid = searchRangeIter(nums,mid+1,nums.size() - 1,target)) != -1)8 ret[1] = mid;9 return ret;10}11int searchRangeIter(vector<int> nums,int first,int last,int target) {12 while(first <= last) {13 int mid = (first + last)/2;14 if (nums[mid] == target){15 return mid;6 collapsed lines
16 }17 else if (nums[mid] < target) first = mid+1;18 else last = mid - 1;19 }20 return -1;21}
在dicuss
中看到一个更简洁的迭代的方法:
1vector<int> searchRange(int A[], int n, int target) {2 int i = 0, j = n - 1;3 vector<int> ret(2, -1);4 // Search for the left one5 while (i < j)6 {7 int mid = (i + j) /2;8 if (A[mid] < target) i = mid + 1;9 else j = mid;10 }11 if (A[i]!=target) return ret;12 else ret[0] = i;13
14 // Search for the right one15 j = n-1; // We don't have to set i to 0 the second time.9 collapsed lines
16 while (i < j)17 {18 int mid = (i + j) /2 + 1;// Make mid biased to the right19 if (A[mid] > target) j = mid - 1;20 else i = mid;// So that this won't make the search range stuck.21 }22 ret[1] = j;23 return ret;24}