第19天
这道题是在起床到去上课前AC出来的,emmm,大概就10多分钟的样子。。。
虽然后来尝试优化了一下,但是感觉效果都不怎么好。。
题目描述:
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,A solution set is:
1[2 [7],3 [2, 2, 3]4]
其实想法很简单,我既然想求combinationSum(7)
,通过遍历数组,我们现在有了一个[2]
,我只需要在求combinatiomSum(7-2)
即可,然后组合起来:
1vector<int> cand;2vector<vector<int> > ret;3vector<vector<int>> combinationSum(vector<int>& candidates, int target) {4 cand = candidates;5 sort(cand.begin(),cand.end());6 vector<int> now;7 combinationSumIter(now,0,target);8 return ret;9}10void combinationSumIter(vector<int> &now,int beg,int target){11 //cout << "target" << target << endl;12 for(int i = beg;i < cand.size();++i) {13 if (target < cand[i])14 break;15 else if (target == cand[i]) {10 collapsed lines
16 vector<int> vec = now;17 vec.push_back(cand[i]);18 ret.push_back(vec);19 } else if (target - cand[i] >= cand[0] ){20 vector<int> vec = now;21 vec.push_back(cand[i]);22 combinationSumIter(vec,i,target-cand[i]);23 }24 }25}
然后在dicuss
中看到的也是类似的想法:
1class Solution {2public:3 std::vector<std::vector<int> > combinationSum(std::vector<int> &candidates, int target) {4 std::sort(candidates.begin(), candidates.end());5 std::vector<std::vector<int> > res;6 std::vector<int> combination;7 combinationSum(candidates, target, res, combination, 0);8 return res;9 }10private:11 void combinationSum(std::vector<int> &candidates, int target, std::vector<std::vector<int> > &res, std::vector<int> &combination, int begin) {12 if (!target) {13 res.push_back(combination);14 return;15 }7 collapsed lines
16 for (int i = begin; i != candidates.size() && target >= candidates[i]; ++i) {17 combination.push_back(candidates[i]);18 combinationSum(candidates, target - candidates[i], res, combination, i);19 combination.pop_back();20 }21 }22};