第22天
今天的题目是 Possible Bipartition :
Given a set of N
people (numbered 1, 2, ..., N
), we would like to split everyone into two groups of any size.
Each person may dislike some other people, and they should not go into the same group.
Formally, if dislikes[i] = [a, b]
, it means it is not allowed to put the people numbered a
and b
into the same group.
Return true
if and only if it is possible to split everyone into two groups in this way.
Example 1:
1Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]2Output: true3Explanation: group1 [1,4], group2 [2,3]
Example 2:
1Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]2Output: false
Example 3:
1Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]2Output: false
Note:
1 <= N <= 2000
0 <= dislikes.length <= 10000
1 <= dislikes[i][j] <= N
dislikes[i][0] < dislikes[i][1]
- There does not exist
i != j
for whichdislikes[i] == dislikes[j]
.
又是一道图的题目,而且和昨天的题目思路是一样的,先遍历染色,然后再判断是否满足即可。
这里有些不同的是,这道题给出的输入是边的列表,然后我们需要手动建个图。同时,这道题还可以用在遍历时判断是否已经不符合了,进而可以提前退出。代码如下:
1bool possibleBipartition(int N, vector<vector<int>>& dislikes) {2 vector<vector<int>> graph(N);3 for(int i = 0;i < dislikes.size(); i++) {4 graph[dislikes[i][0]-1].push_back(dislikes[i][1]-1);5 graph[dislikes[i][1]-1].push_back(dislikes[i][0]-1);6 }7 char color = 'b';8 vector<char> visited(N, 'w');9 for(int i = 0;i < N;i++) {10 if (visited[i] == 'w' && dfs(graph, visited ,i, color) == false) {11 return false;12 }13 }14 return true;15}13 collapsed lines
16
17bool dfs(vector<vector<int>> &graph, vector<char> &visited, int index, char color) {18 visited[index] = color;19
20 for(int i = 0;i < graph[index].size(); i++) {21 int j = graph[index][i];22 if ((visited[j] == 'w' && !dfs(graph, visited, j, ~color)) || visited[j] == color){23 return false;24 }25 }26
27 return true;28}