第20天。
今天的题目是 Minimum Moves to Equal Array Elements II :
Given a non-empty integer array, find the minimum number of moves required to make all array elements equal, where a move is incrementing a selected element by 1 or decrementing a selected element by 1.
You may assume the array’s length is at most 10,000.
Example:
1Input:2[1,2,3]3
4Output:526
7Explanation:8Only two moves are needed (remember each move increments or decrements one element):9
10[1,2,3] => [2,2,3] => [2,2,2]
这道题需要一些数学推导,它的目标就是:
$$ min_k { \sum_{i=1}^n |n_i - n_k| } $$ 其中 $n_i$ 表示数组排序后中第 $i$ 个元素。
我们将式子展开可以得到: $$ min_k { \sum_{i=1}^n |n_i - n_k| } =
min_k { \sum_{i=1}^k (n_k-n_i) + \sum_{i=k+1}^n(n_i-n_k) } \
= min_k { \sum_{i=1}^k n_k - \sum_{i=1}^k n_i + \sum_{i=k+1}^n n_i - \sum_{i=k+1}^n n_k } \
= min_k { \sum_{i=k+1}^n n_i - \sum_{i=1}^k n_i + (2k - n)n_k } $$ 因此,我们可以写出如下代码:
1int minMoves2(vector<int>& nums) {2 long long res = LONG_MAX;3 sort(nums.begin(), nums.end());4 long long rightSum = 0;5 for(auto i: nums) rightSum += i;6 long long leftSum = 0;7 int n = nums.size();8
9 for(int i = 0;i < n; ++i) {10 res = min(res, rightSum - leftSum + (2*i - n) * (long long)nums[i]);11 rightSum -= nums[i];12 leftSum += nums[i];13 // cout << res << endl;14 }15
2 collapsed lines
16 return res;17}
这样还不是最优解,然而最优解我没看懂(捂脸),为什么用中位数求就是对的呢?:
1 int minMoves2(vector<int>& nums) {2
3 sort(nums.begin(), nums.end());4
5 int mid;6
7 if (nums.size() % 2 == 0){8
9 mid = (nums[nums.size()/2] + nums[(nums.size()/2) - 1])/2;10
11 }else{12
13 mid = nums[nums.size()/2];14
15 }12 collapsed lines
16
17 int result = 0;18
19 for (int i = 0; i < nums.size(); i++){20
21 result += abs(nums[i] - mid);22
23 }24
25 return result;26
27 }