第90天。
今天的题目是Linked List Random Node:
Given a singly linked list, return a random node’s value from the linked list. Each node must have the same probability of being chosen.
Follow up: What if the linked list is extremely large and its length is unknown to you? Could you solve this efficiently without using extra space?
Example:
// Init a singly linked list [1,2,3]. ListNode head = new ListNode(1); head.next = new ListNode(2); head.next.next = new ListNode(3); Solution solution = new Solution(head);
// getRandom() should return either 1, 2, or 3 randomly. Each element should have equal probability of returning. solution.getRandom();
写出了一个朴素的解法,两次扫描:
1Solution(ListNode* p) {2 len = 0;3 head = p;4 while(p) {5 len++;6 p = p->next;7 }8 cout << len << endl;9}10
11/** Returns a random node's value. */12int getRandom() {13 int r = rand() % len;14 cout << r << endl;15 ListNode *p = head;7 collapsed lines
16 while(r-- && p) {17 p = p->next;18 }19 return p->val;20}21int len;22ListNode *head;
然后是利用栈来做的一个解法,即一直递归调用直到链表结尾,这时我们已经遍历了一遍链表就可以知道其长度了,在这时生成随机数,然后在递归调用返回的时候通过这个随机数来选取节点:
1int getRandom() {2 temp_len = 0;3 getRandom(head);4 return res;5}6bool getRandom(ListNode *p) {7 if (p == nullptr) {8 rand_n = rand() % temp_len;9 return false;10 }11 temp_len++;12 if(getRandom(p->next)) return true;13 if (rand_n == 0) {14 res = p->val;15 return true;8 collapsed lines
16 }17 rand_n--;18 return false;19}20int temp_len;21int rand_n;22ListNode *head;23int res;
最后是dicuss
中的水库抽样法:
1int getRandom() {2 int res = head->val;3 ListNode* node = head->next;4 int i = 2;5 while(node){6 int j = rand()%i;7 if(j==0)8 res = node->val;9 i++;10 node = node->next;11 }12 return res;13}
证明可参考:http://blog.csdn.net/so_geili/article/details/52937212