第46天。
今天的题目是Climbing Stairs:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2 Output: 2 Explanation: There are two ways to climb to the top.
- 1 step + 1 step
- 2 steps Example 2:
Input: 3 Output: 3 Explanation: There are three ways to climb to the top.
- 1 step + 1 step + 1 step
- 1 step + 2 steps
- 2 steps + 1 step
首先,要到达第n个台阶,我们需要先到n-1或n-2台阶,只要到达n-1和n-2台阶处,我们就能够通过一步到达第n个台阶,这时可以写出这样的递推式:
1climbStairs(n) = climbStairs(n-1) + climbStairs(n-2);2climbStairs(0) = climbStairs(1) = 1;
熟悉的话,可以一眼看出这是斐波那契数列.
这样的话,我们可以很容易写出:
1int climbStairs(int n) {2 if (n == 0 || n == 1) return 1;3 return climbStairs(n-1) + climbStairs(n-2);4}
但是这样会出现超时的情况,我们可以用一个数组来记录整个斐波那契数列,然后返回适当的值即可:
1int climbStairs(int n) {2 vector<int> vec(n+1,1);3 for(int i = 2;i <= n;i++) {4 vec[i] = vec[i-1] + vec[i-2];5 }6 return vec[n];7}
这样的时间复杂度和空间复杂度都是O(n)
.
我们可以把空间复杂度降到O(1)
:
1int climbStairs(int n) {2 int a = 0,b = 1,t;3 while(n--) {4 t = a+b;5 a = b;6 b = t;7 }8 return b;9}